1 Polar Coordinate Practice

problem:

\int_{0}^2 \int_{0}^\sqrt{ 2x-x^2 }7\sqrt{ x^2 + y^2 }dydx

this tells us that y is running from 0 up to the curve

this is some circle of the form

iframe

which is this circle

thisis also known as

lets graph this

Desmos

we are looking to fin the top region

we can try to solve it, but it turns out to b a mess like

so lets do it the normal way

2 - Vector Function Problem

we are given

lets use t=1

so k is

plugging this in

1 & 2 & 3 \\ 6 & 1 & 1 \\ 6 & -1 & 1 \end{vmatrix} = 1

Chain order Thing

step 1: sketch

Desmos

we are trying to find the area above the x^2 curve and under the y=64 line

so,

so

Desmos

now we are tying to find the area before the line x=pi/2, and under the curve of y = sinx

Another One - Converting to a Polar Integral

sketching

yields a circle centered at the origin, with a radius of 2. we are looking for the top right quadrant of the circle

thus yieilds

for I1:

I2

\frac{\pi}{2} \left( \frac{1}{2 }-\frac{1}{2}e^{-4} \right)$$ $$\frac{\pi}{4}\left( 1- \frac{1}{e^4} \right) = \frac{\pi}{4} \left( \frac{e^4-1}{e^4} \right)$$ ## Another One for Double Integral $$\int \int_{\mathcal{D}}x dA$$ $\mathcal{D}$ is the region between $x^2 +y^2 = 16$ and $x^2 + y^2 = 4x$ > [!Info] Desmos > > <iframe src="https://www.desmos.com/calculator/uv9eul3ghk" width=600 height="400" ></iframe> method 1 to go about solving this: 1. $x^2 + y^2 - 4x = 0$ $$x^2 - 4x + y^2 = 0$$ $$(x-2)^2 - 4 +y^2 = 0$$ $$(x-2)^2 + y^2 =4 \ \ \ r = 4\cos \theta$$ 2. $r^2 = 4r\cos \theta$ $r = 4\cos \theta$ $$I_{1}: \ \ \int r^2 \cos \theta \ dr$$ $$ \left. \frac{r^3}{3}\cos \theta \right|_{4\cos \theta}^4$$ $$\frac{64}{3}\cos \theta - \frac{64}{3}\cos^4 \theta$$ $$$\frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos \theta - \cos^4 \theta \ d\theta$$ $$\frac{64}{3} \int _{0}^ \frac{\pi}{2} \cos \theta - \frac{64}{3}\int_{0}^ \frac{\pi}{2} \cos^4 \theta \ d\theta$$ now we just simplify mechanically $$\int_{o}^ \frac{\pi}{2} \left( \frac{1-\cos 2\theta}{2} \right)^2 d\theta$$ $$\int_{0}^ \frac{\pi}{2} \frac{1}{4} ( 1-2\cos 2 \theta + \cos^2(2\theta))d\theta$$ $$ \frac{1}{2} \int_{0}^ \frac{\pi}{2} 1+2\cos(2\theta)+\left( \frac{1+cos (4\theta)}{2} \right)d\theta$$ $$\frac{1}{4} \int_{0}^ \frac{\pi}{2} \frac{3}{2} + 2\cos(2\theta)+\frac{\cos(4\theta)}{2} d\theta$$ $$\frac{1}{4 } \left( \frac{3}{2}\theta + \sin (2\theta)+ \frac{\sin(4\theta)}{8} \right) d\theta